US009275426B2

a2z United States Patent (10) Patent No.: US 9,275,426 B2
Hoeg (45) Date of Patent: Mar. 1, 2016
(54) METHOD AND APPARATUS FOR UNIFYING 2006/0265258 Al1* 11/2006 Powell etal.c......... 705/7
2008/0109795 Al* 52008 Bucketal.ccc.e.. 717/137
GRAPHICS PROCESSING UNIT 2011/0035736 Al 2/2011 Stefansson et al.
COMPUTATION LANGUAGES 2013/0159982 AL* 62013 Lefios w.corooverrcrnrenen 717/146
(75) Inventor: Steven Paterson Hoeg, Waterloo, CA OTHER PUBLICATIONS
Us) A. Munshi, “The OpenCL Specification”, Version 1.0, Document
(73) Assignee: ADOBE SYSTEMS II{_elels;)lg: 14;35,_11{3}2(?03 OpenCL Working Group, May 16, 2009, p.
INCORPORATED, San Jose, CA (US) Gabriel Martinez, Mark Gardner and Wu-chun Feng, “CU2CL: A
" CUDA-to-OpenCL Translator for Multi- and Many-core Architec-
(*) Notice: Subject to any disclaimer, the term of this tures,” 2011 IEEE 17th International Conference on Parallel and
patent is extended or adjusted under 35 Distributed Systems, pp. 300-307.*
U.S.C. 154(b) by 382 days. Christian Siegl et al., “OpenCL, a Viable Solution for High-perfor-
mance Medical Image Reconstruction?”, 9 pgs., Mar. 16, 2011.
(21) Appl. No.: 13/487,653 Sreepathi Pai et al., “Plasma: Portable Programming for SIMD Het-
erogeneous Accelerators”, Supercomputer Education and Research
(22) Filed: Jun. 4, 2012 Centre, Indian Institute of Science, 10 pgs., Jan. 9, 2010.
Marcus Huntemann et al., Single Scattering of Aspherical Particles in
(65) Prior Publication Data DDA Calculations on GPUs Using OpenCL, Jan. 14, 2011, 14 pgs.
US 2013/0321436 Al Dec. 5,2013 * cited by examiner
(51) Imnt.ClL Primary Examiner — Sing-Wai Wu
GO6T 1/00 (2006.01) (74) Attorney, Agent, or Firm — Keller Jolley Preece
GO6F 9/45 (2006.01)
(52) US.CL (57) ABSTRACT
C.PC s GO6T 1/00 (2013.01) A method and apparatus for unifying graphics processing unit
(58) Field of Classification Search (GPU) computation languages is disclosed. The method com-
CPC ... s GO6T 1/00;. GO6T 1/20 prises identifying a GPU of a computer system; accessing a
See application file for complete search history. plurality of macros representing a difference in source code
. between a first GPU computation language and a second GPU
(56) References Cited computation language, expanding each macro in the plurality
U.S. PATENT DOCUMENTS of' macros based on the identified GPU and executing a kernel
on the computer system using the expanded macro.
6,317,871 B1* 11/2001 Andrewsetal. 717/137
2005/0012749 A1* 1/2005 Gonzalezetal. ... 345/522 20 Claims, 3 Drawing Sheets

100
COMPUTER | —102
104 ~{ |
CPU [+ SUPPORT [~ 106
CIRCUITS
/'y
Y
MEMORY | — 108

OPERATING SYSTEM

T 110

KERNELS

|"\ 112

GPU IDENTIFICATION

1T 114

MACROS

T 116

UNIFYING AGENT

T 118

U.S. Patent Mar. 1, 2016

104 —~

Sheet 1 of 3

US 9,275,426 B2

1086

COMPUTER
cPy [*™ SUPPORT
i CIRCUITS
MEMORY

OPERATING SYSTEM

T 110

KERNELS

T 112

GPU IDENTIFICATION

T~ 114

MACRQS

T 116

UNIFYING AGENT

1 118

FIG. 1

U.S. Patent Mar. 1, 2016 Sheet 2 of 3 US 9,275,426 B2

200

C STIRT)—-\ 202

IDENTIFY GPU —— 204

ACCESS MACROS —— 206

EXPAND MACROS BASED |——_ 208
ON IDENTIFIED GPU

EXECUTE KERNEL USING |—_ 210
EXPANDED MACROS

C END)—\- 212

FIG. 2

US 9,275,426 B2

Sheet 3 of 3

Mar. 1, 2016

U.S. Patent

09¢ € Old
08¢ 0.€ 3DIA3A 06¢
(S)IAV1dSIA | |QUVOgAIN| | TOYLINOD MYOMLIN
HOSHND
— 2ee
<m,wm SNOILDNYLSNI
_ | NVYDO0¥d
0G€ 0FE€ IDVANIALNI
(S)3A0IA3A LNdLNO/LNdNI MHYOMLIN _
0Z2€ AMOWINW
0€€ ADVLHIALNI O/I
uole ® e o qo0le e01€
HOSS3D0Nd HOSSIO0Nd HOSS3ID0Ud
00€ W3LSAS ONILNANOD

US 9,275,426 B2

1
METHOD AND APPARATUS FOR UNIFYING
GRAPHICS PROCESSING UNIT
COMPUTATION LANGUAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention generally relate to
computer graphics processing, and more particularly, to a
method and apparatus for unifying graphics processing unit
computation languages.

2. Description of the Related Art

A graphics processing unit (GPU) is a processor optimized
for accelerating computer graphics. GPU computation lan-
guages have been developed for rendering the GPUs on spe-
cific hardware and/or software platforms.

For example, a GPU method for rendering computer
graphics built on NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) technology can only run on the NVIDIA
hardware platform, while Open Computing Language
(OpenCL) is a GPU computing language that may run on
multiple platforms. In order to allow platform independent
application and integration of GPUs having a platform depen-
dency, the GPU’s computation language platform depen-
dency must be overcome.

One solution which would allow platform independent
application and integration of the CUDA and OpenCL com-
puting languages, for example, is to maintain parallel
OpenCL and CUDA code bases. However, this solution
requires a massive amount of duplicated code that becomes
difficult to maintain. Another solution is to develop a new
language or compiler that facilitates use of the functionality
of'both OpenCL and CUDA. However, this requires a signifi-
cant commitment of time and expense to develop and test the
new language. Another solution is to support only OpenCL,
but that would require abandoning a significant amount of
existing and well-tested CUDA code. Also, CUDA allows
certain functionality on NVIDIA hardware, which function-
ality is not available through OpenCL..

Therefore, there is a need for a method and apparatus for
unifying GPU computation languages.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus for
unifying graphics processing unit computation languages. In
one embodiment, the method comprises identifyinga GPU on
a computing device and accessing a plurality of macros rep-
resenting a difference in source code between a first GPU
computation language and a second GPU computation lan-
guage. The method expands each macro based on the identi-
fied GPU and executes a kernel on the computing device
using the expanded macro.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 a block diagram of a system for unifying graphics
processing unit computation languages, according to one or
more embodiments of the invention;

FIG. 2 depicts a flow diagram of a method for unifying
graphics processing unit computational languages as per-
formed by the unifying agent of FIG. 1, according to one or
more embodiments of the invention; and

FIG. 3 depicts a computer system that can be utilized in
various embodiments of the present invention, according to
one or more embodiments of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

While the method and apparatus is described herein by way
of example for several embodiments and illustrative draw-
ings, those skilled in the art will recognize that the method
and apparatus for unifying graphics processing unit compu-
tation languages are not limited to the embodiments or draw-
ings described. It should be understood, that the drawings and
detailed description thereto are not intended to limit embodi-
ments to the particular form disclosed. Rather, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope of the method and apparatus for
unifying graphics processing unit computation languages as
defined by the appended claims. Any headings used herein are
for organizational purposes only and are not meant to limit the
scope of the description or the claims. As used herein, the
word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to. Addition-
ally, as used herein, the word “video” refers generally to any
multi-media object or data, and although in various embodi-
ments of the invention may refer to only a video object (still,
animated or moving), in other embodiments, may refer to a
combination of both video and audio objects or an audio
object alone.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present invention comprise a method
and apparatus for unifying GPU computation languages. The
embodiments identity the GPU of a computer system. The
method then accesses macros that represent a difference in
source code between a first GPU computation language and a
second GPU computation language. The embodiments
expand the macros based on the identified GPU and execute a
kernel using the expanded macros.

In the present invention, a macro contains source code for
both the first GPU computation language and the second GPU
computation language along with instructions for when each
piece of source code is to be used. A computer program, also
called a kernel, contains tokens. Each token is a placeholder
that corresponds to a macro. Macro expansion is a term which
describes the process of substituting one or more lines of
source code from a macro in place of the corresponding token
in the kernel.

The following is a simple example to illustrate what hap-
pens in a macro expansion. A kernel is written to perform a
function on a computer, for example, to print a poster. The
poster can be printed in multiple languages. The title of the
poster must be translated into one of the multiple languages
before it is printed. The kernel may be written in such a way
that it need not contain every translation. The kernel need
only be written with a token that, upon execution, will access
a macro. The macro will provide the appropriate substitution
during macro expansion. For example, the kernel contains a
placeholder token named TRANSLATE_TITLE. When the
kernel is executed, a TRANSLATE_TITLE macro is
accessed and the TRANSLATE_TITLE macro is expanded.
That is, the token TRANSLATE_TITLE in the kernel is
replaced with a substitute (local) value defined in the
expanded macro. For English, the TRANSLATE_TITLE
token will be replaced with, “My Poster” as the substitute
value. For Spanish, the TRANSLATE_TITLE token will be
replaced with, “Mi Cartel” as the substitute value. However,
rather than simply replacing a token with a substitute value,
the present invention replaces the token with CUDA or
OpenCL code.

US 9,275,426 B2

3

Although the present disclosure describes the invention in
terms of CUDA and OpenCL GPU Computation Languages,
the present invention may be used to unify two or more GPU
computation languages derived from a common program-
ming language, such as C++.

Because CUDA and OpenCL are both programming lan-
guages derived from the C programming language, there are
many similarities in the code bases. Embodiments of the
present invention define a compatibility layer in the source
code of a kernel. The compatibility layer of the source code
contains tokens, such as TRANSLATE_TITLE in the previ-
ous example. Macros are defined, which contain language
specific source code that will replace these tokens in the
compatibility layer. The macros represent the specific differ-
ences between the code bases of the two GPU computation
languages. When the kernel is executed, the macro is
expanded. As described above, macro expansion is a term
which describes the process of substituting one or more lines
of source code from a macro in place of the corresponding
token in the kernel. The specific code for the appropriate GPU
language, which is contained in the macro, is substituted into
the place where the token had been located in the source code.
Whether the macro is expanded for running in a CUDA envi-
ronment and/or expanded for running in an OpenCL environ-
ment, the macro defines a specific behavior in the GPU.

Embodiments of the present invention provide a method
and apparatus for unifying GPU computation languages.
Advantageously, there is no need to maintain separate code
bases or separate compilers.

Various embodiments of an apparatus and method for uni-
fying graphics processing unit computation languages are
described. In the following detailed description, numerous
specific details are set forth to provide a thorough understand-
ing of the claimed subject matter. However, it will be under-
stood by those skilled in the art that claimed subject matter
may be practiced without these specific details. In other
instances, methods, apparatuses or systems that would be
known by one of ordinary skill have not been described in
detail so as not to obscure claimed subject matter.

Some portions of the detailed description which follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. As described herein, an
algorithm is generally considered to be a self-consistent
sequence of operations or similar signal processing leading to
a desired result. In this context, operations or processing
involve physical manipulation of physical quantities. Typi-
cally, although not necessarily, such quantities may take the
form of electrical or magnetic signals capable of being stored,
transferred, combined, compared or otherwise manipulated.
It has proven convenient at times, principally for reasons of
common usage, to refer to such signals as bits, data, values,
elements, symbols, characters, terms, numbers, numerals or
the like. It should be understood, however, that all of these or
similar terms are to be associated with appropriate physical
quantities and are merely convenient labels. Unless specifi-
cally stated otherwise, as apparent from the following discus-
sion, it is appreciated that throughout this specification dis-
cussions utilizing terms such as “processing,” “computing,”

10

15

20

25

30

35

40

45

50

55

60

65

4

“calculating,” “determining” or the like refer to actions or
processes of a specific apparatus, such as a special purpose
computer or a similar special purpose electronic computing
device. In the context of this specification, therefore, a special
purpose computer or a similar special purpose electronic
computing device is capable of manipulating or transforming
signals, typically represented as physical electronic or mag-
netic quantities within memories, registers, or other informa-
tion storage devices, transmission devices, or display devices
of the special purpose computer or similar special purpose
electronic computing device.

FIG. 1 depicts ablock diagram of a system 100 for unifying
graphics processing unit (GPU) computation languages,
according to one or more embodiments of the invention. The
system 100 represents a computer 102. The system 100 uses
a plurality of macros 116 for unifying GPU computation
languages based on the identification of the GPU utilized by
computer 102.

The computer 102 comprises a CPU 104, support circuits
106, and a memory 108. The computer 102 is a type of
computing device (e.g., alaptop, a desktop, a Personal Digital
Assistant (PDA) and/or the like). The CPU 104 may comprise
one or more commercially available microprocessors or
microcontrollers that facilitate data processing and storage.
The various support circuits 106 facilitate the operation of the
CPU 104 and include a GPU, one or more clock circuits,
power supplies, cache, input/output circuits, displays, and the
like. The memory 108 comprises at least one of Read Only
Memory (ROM), Random Access Memory (RAM), disk
drive storage, optical storage, removable storage and/or the
like. The memory 108 comprises an operating system (OS)
110, a plurality of kernels 112, a unifying agent 118, a plu-
rality of macros 116 and a GPU identification 114.

According to some embodiments of the invention, the
operating system 110 generally manages various computer
resources (e.g., network resources, file processors, and/or the
like). The operating system 110 is configured to execute
operations on one or more hardware and/or software mod-
ules, such as Network Interface Cards (NICs), hard disks,
virtualization layers, firewalls and/or the like. Examples of
the operating system 110 may include, but are not limited to,
Linux, Mac OSX, BSD, UNIX, Microsoft Windows, and the
like.

According to some embodiments, the unifying agent 118
unifies GPU computational languages as described with
respect to FIG. 2 below. The unifying agent 118 accesses
macros. In some embodiments the macros 116 represent a
difference in source code between computation languages,
for example, a difference between a first GPU computation
language and a second GPU computation language. Accord-
ing to an embodiment, the first GPU computational language
is Compute Unified Device Architecture (CUDA) and the
second GPU computational language is Open Computing
Language (Open CL). The unifying agent 118 identifies the
GPU. The GPU identification 114 is obtained by determining
whether the hardware of the computer 102 is CUDA-based or
OpenCL-based. In some embodiments, CUDA runs NVIDIA
hardware, whereas OpenCL runs on non-NVIDIA hardware.
NVIDIA hardware does not understand a program that is
written in OpenCL and non-NVIDIA hardware does not
understand a program that is written in CUDA.

The macros 116 define differences in the source code
between the GPU languages. For example, a first GPU lan-
guage may require a certain syntax to start a program, for
example, syntaxA. A second GPU language may require a
different syntax to start a program, for example, syntaxB. A
macro 116 will contain instructions for when to use syntaxA

US 9,275,426 B2

5

and when to use syntaxB. A kernel 112 is a function that runs
on the computer 102 and accesses a macro 116. The kernel
112 has a compatibility layer written into its source code. The
compatibility layer contains tokens, sometimes referred to as
placeholders. For example, a token may be called “START
PROGRAM?”. When the kernel is executed, the unifying
agent 118 expands the macro START_PROGRAM based on
the identified GPU. As described above, macro expansion is a
term which describes the process of substituting one or more
lines of source code from a macro in place of the correspond-
ing token in the kernel. The macro 116 provides instructions
to replace the START_PROGRAM token in the kernel with
syntaxA in the first GPU environment and to replace the
START_PROGRAM token with syntaxB in the second GPU
environment. Thus, only one kernel needs to be written to
perform a function in either GPU environment, by expanding
a macro to reconcile the differences in the GPU computation
languages.

FIG. 2 depicts a flow diagram a method 200 for unifying
graphics processing unit computational languages as per-
formed by the unifying agent 118 of FIG. 1, according to one
or more embodiments of the invention. The method 200 is
invoked when the kernel is executed, for example, when a
user initiates play of a video game.

The method 200 identifies the GPU on the computer and
accesses macros created to resolve the language-specific dif-
ferences, depending on what GPU is being targeted. The
macros will be expanded based on the identified GPU. The
macros represent a difference in source code between com-
putation languages, for example, a difference between a first
GPU computation language and a second GPU computation
language. According to one embodiment, the first GPU com-
putational language is Compute Unified Device Architecture
(CUDA) and the second GPU computational language is
Open Computing Language (Open CL).

The method 200 starts at step 202, and proceeds to step
204. At step 204, the method 200 identifies the GPU. The
GPU is identified by determining, for example, whether hard-
ware of the computer on which the application is running is
CUDA-based or OpenCL-based. Determining the type of
graphics card present on a computer identifies the GPU. In
some embodiments, the type of graphics card present is auto-
matically detected. In some embodiments, the type of graph-
ics card present is determined by running a utility program
that returns the type of graphics card that is present. The
method 200 proceeds to step 206.

At step 206 the method 200 accesses a plurality of macros.
The macros define differences in the source code between the
GPU languages and provide instructions for when each is to
be utilized. Each macro corresponds to at least one token in
the kernel. The method 200 proceeds to step 208. At step 208,
the method 200 expands the macros based on the identified
GPU. The method 200 expands the macros when the kernel is
executed. As described above, macro expansion is a term
which describes the process of substituting one or more lines
of source code from a macro in place of the corresponding
token in the kernel. When the kernel is executed on the com-
puter and the identified GPU is OpenCL, all of the tokens in
the kernels are substituted with OpenCL source code found in
the macros. Once substitution is complete, all of the kernels
are now written in OpenCL. Conversely, if the identified GPU
is CUDA, all of the tokens in the kernels are substituted with
CUDA source code found in the macros, resulting in all of the
kernels now being written in CUDA source code.

As will be evident in the following description, when
executed in a CUDA environment, a GF_KERNEL macro is
expanded using the part of the macro defined for CUDA.

10

15

20

25

30

35

40

45

55

60

6

When compiling in an OpenCL environment, the GF_KER-
NEL macro is expanded using the part of the macro defined
for OpenCL. The following GF_KERNEL defines a point of
entry in a kernel which executes on a GPU. It essentially is the
term for “start”. However, when starting a kernel in CUDA,
“_global_void” denotes the meaning “start” and in OpenCL,
“_kernel void” denotes the meaning “start”. Although much
of the rest of the source code is the same, the “start” phrase
must be reconciled based on the GPU in which it is to be
compiled. When the macro is expanded for CUDA, the
GF_KERNEL token is replaced by “_global_void”. When
the macro is expanded in OpenCL, the GF_KERNEL token is
replaced by “_kernel void”.

The macro GF_KERNEL is defined below. The macro
denotes a CUDA_global_function or an OpenCL._kernel.

#if GF_DEVICE_TARGET_CUDA || GF_DEVICE_TARGET_HOST
#define GF_KERNEL extern “C” _global__ void

#else

“#define GF_KERNEL _kernel void\n”

#endif

The following is an example of a kernel for sharpening an
image, that uses the GF_KERNEL macro from above:

GF_DEVICE_SECTION(
GF_CUDA_TEXTURE(float4, inSrcTexture)

GF_KERNEL SharpenKernel(
GF_OPENCL_TEXTURE(inSrcTexture),
GF_PTR(float4) outDest,
int inPitch,

DevicePixelFormat inDeviceFormat,
int inWidth,

int inHeight,

float inCenterCoeft,

float inSurroundCoeff)

{
int x = KernelX();
inty = KernelY();
if (x <inWidth && y < inHeight)

PixelRGB up = GF_READTEXTUREPIXEL(inSrcTexture,x+0.5f,
y-0.5f, CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST);

PixelRGB left = GF_READTEXTUREPIXEL(inSrcTexture,
x-0.5f, y+0.5f, CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST);

PixelRGBcente r= GF_READTEXTUREPIXEL(inSrcTexture,
x+0.5f, y+0.5f, CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST);

PixelRGB right = GF_READTEXTUREPIXEL (inSrcTexture,
x+1.5f, y+0.5f, CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST);

PixelRGB down = GF_READTEXTUREPIXEL (inSrcTexture,
x+0.5f, y+1.5f, CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST);

PixelRGB surround = AddPixels(AddPixels(AddPixels(up, left),
right), down);

surround = MultiplyPixel(surround, inSurroundCoeft);

center = MultiplyPixel(center, inCenterCoeff);

PixelRGB result = AddPixels(center, surround);

result = DividePixel(result, inCenterCoeff + 4*inSurroundCoeff);

WriteRGBPixel(result, outDest, inPitch, inDeviceFormat, x, y);

Hence, the line in the code above that reads GF_KERNEL
SharpenKernel(will read “_global_void SharpenKernel(” in
CUDA after macro expansion, but will read “_kernel void
Sharpen Kernel(” in OpenCL after macro expansion.

US 9,275,426 B2

7

Therefore, only one kernel is written, but the kernel runs
different code depending on the specific GPU that is identi-
fied. In some instances, where the code bases for the two GPU
computation languages are so divergent and share little com-
mon code, separate piece of code are maintained for each
GPU language. In the example above, the way to define
texture in CUDA is so different from the way texture is
defined in OpenCL, that the GF_CUDA_TEXTURE macro
and the GF_OPENCL_TEXTURE macro are maintained
separately. When the GF_CUDA_TEXTURE macro is
expanded, CUDA source code will replace the GF_CUDA _
TEXTURE token but the macro will not contain OpenCL
source code (thereby replacing the GF_CUDA_TEXTURE
token with a blank, or null value in OpenCL). Conversely
when the GF_OPENCL_TEXTURE macro is expanded,
OpenCL source code will replace the GF_OPENCI,_TEX-
TURE token but the macro will not contain CUDA source
code (thereby replacing the GF_OPENCL_TEXTURE token
with a blank, or null value in CUDA).

The method 200 proceeds to step 210. At step 210, the
method 200 executes the kernel using the expanded macros.
Once the macro expansion from step 208 is complete, the
method 200 compiles the kernels, thereby translating them
into executable code and finally, executes the compiled ker-
nels on the computer. The method 200 proceeds to step 210
and ends.

The embodiments of the present invention may be embod-
ied as methods, apparatus, electronic devices, and/or com-
puter program products. Accordingly, the embodiments of the
present invention may be embodied in hardware and/or in
software (including firmware, resident software, micro-code,
etc.), which may be generally referred to herein as a “circuit”
or “module”. Furthermore, the present invention may take the
form of a computer program product on a computer-usable or
computer-readable storage medium having computer-usable
or computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable or
computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device. These computer program
instructions may also be stored in a computer-usable or com-
puter-readable memory that may direct a computer or other
programmable data processing apparatus to function in a
particular manner, such that the instructions stored in the
computer usable or computer-readable memory produce an
article of manufacture including instructions that implement
the function specified in the flowchart and/or block diagram
block or blocks.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
examples (a non exhaustive list) of the computer-readable
medium include the following: hard disks, optical storage
devices, a transmission media such as those supporting the
Internet or an intranet, magnetic storage devices, an electrical
connection having one or more wires, a portable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, and a
compact disc read-only memory (CD-ROM).

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro-
gramming language, such as Java®, Smalltalk or C++, and
the like. However, the computer program code for carrying

5

10

15

20

25

30

35

40

45

50

55

60

65

8

out operations of the present invention may also be written in
conventional procedural programming languages, such as the
“C” programming language and/or any other lower level
assembler languages. It will be further appreciated that the
functionality of any or all of the program modules may also be
implemented using discrete hardware components, one or
more Application Specific Integrated Circuits (ASICs), or
programmed Digital Signal Processors or microcontrollers.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
present disclosure and its practical applications, to thereby
enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as may be
suited to the particular use contemplated.

Example Computer System

FIG. 3 depicts a computer system that can be used to
implement the methods of FIGS. 1-2 in various embodiments
of the present invention, according to one or more embodi-
ments of the invention. FIG. 3 depicts a computer system that
can be utilized in various embodiments of the present inven-
tion to implement the computer 102, according to one or more
embodiments.

Various embodiments of method and apparatus for unify-
ing graphics processing unit computation languages, as
described herein, may be executed on one or more computer
systems, which may interact with various other devices. One
such computer system is computer system 300 illustrated by
FIG. 3, which may in various embodiments implement any of
the elements or functionality illustrated in FIGS. 1-2. In vari-
ous embodiments, computer system 300 may be configured to
implement methods described above. The computer system
300 may be used to implement any other system, device,
element, functionality or method of the above-described
embodiments. In the illustrated embodiments, computer sys-
tem 300 may be configured to implement method 200, as
processor-executable executable program instructions 322
(e.g., program instructions executable by processor(s) 310) in
various embodiments.

In the illustrated embodiment, computer system 300
includes one or more processors 310 coupled to a system
memory 320 via an input/output (I/O) interface 330. Com-
puter system 300 further includes a network interface 340
coupled to I/O interface 330, and one or more input/output
devices 350, such as cursor control device 360, keyboard 370,
and display(s) 380. In various embodiments, any of compo-
nents may be utilized by the system to receive user input
described above. In various embodiments, a user interface
(e.g., user interface) may be generated and displayed on dis-
play 380. In some cases, it is contemplated that embodiments
may be implemented using a single instance of computer
system 300, while in other embodiments multiple such sys-
tems, or multiple nodes making up computer system 300,
may be configured to host different portions or instances of
various embodiments. For example, in one embodiment some
elements may be implemented via one or more nodes of
computer system 300 that are distinct from those nodes
implementing other elements. In another example, multiple
nodes may implement computer system 300 in a distributed
manner.

In different embodiments, computer system 300 may be
any of various types of devices, including, but not limited to,
apersonal computer system, desktop computer, laptop, note-

US 9,275,426 B2

9

book, or netbook computer, mainframe computer system,
handheld computer, workstation, network computer, a cam-
era, a set top box, a mobile device, a consumer device, video
game console, handheld video game device, application
server, storage device, a peripheral device such as a switch,
modem, router, or in general any type of computing or elec-
tronic device.

In various embodiments, computer system 300 may be a
uniprocessor system including one processor 310, or a mul-
tiprocessor system including several processors 310 (e.g.,
two, four, eight, or another suitable number). Processors 310
may be any suitable processor capable of executing instruc-
tions. For example, in various embodiments processors 310
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x96, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 310 may commonly, but not necessarily, implement
the same ISA.

System memory 320 may be configured to store program
instructions 322 and/or data 332 accessible by processor 310.
In various embodiments, system memory 320 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram instructions and data implementing any of the elements
of the embodiments described above may be stored within
system memory 320. In other embodiments, program instruc-
tions and/or data may be received, sent or stored upon differ-
ent types of computer-accessible media or on similar media
separate from system memory 320 or computer system 300.

In one embodiment, /O interface 330 may be configured to
coordinate I/O traffic between processor 310, system memory
320, and any peripheral devices in the device, including net-
work interface 340 or other peripheral interfaces, such as
input/output devices 350, In some embodiments, /O inter-
face 330 may perform any necessary protocol, timing or other
data transformations to convert data signals from one com-
ponents (e.g., system memory 320) into a format suitable for
use by another component (e.g., processor 310). In some
embodiments, /O interface 330 may include support for
devices attached through various types of peripheral buses,
such as a variant of the Peripheral Component Interconnect
(PCI) bus standard or the Universal Serial Bus (USB) stan-
dard, for example. In some embodiments, the function of I/O
interface 330 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, in some embodiments some or all of the functionality of
I/Ointerface 330, such as an interface to system memory 320,
may be incorporated directly into processor 310.

Network interface 340 may be configured to allow data to
be exchanged between computer system 300 and other
devices attached to a network (e.g., network 390), such as one
or more external systems or between nodes of computer sys-
tem 300. In various embodiments, network 390 may include
one or more networks including but not limited to Local Area
Networks (LLANs) (e.g., an Ethernet or corporate network),
Wide Area Networks (WANs) (e.g., the Internet), wireless
data networks, some other electronic data network, or some
combination thereof. In various embodiments, network inter-
face 340 may support communication via wired or wireless
general data networks, such as any suitable type of Ethernet
network, for example; via telecommunications/telephony
networks such as analog voice networks or digital fiber com-

20

35

40

45

55

10

munications networks; via storage area networks such as
Fibre Channel SANs, or via any other suitable type of net-
work and/or protocol.

Input/output devices 350 may, in some embodiments,
include one or more display terminals, keyboards, keypads,
touch pads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or access-
ing data by one or more computer systems 300. Multiple
input/output devices 350 may be present in computer system
300 or may be distributed on various nodes of computer
system 300. In some embodiments, similar input/output
devices may be separate from computer system 300 and may
interact with one or more nodes of computer system 300
through a wired or wireless connection, such as over network
interface 340.

In some embodiments, the illustrated computer system
may implement any of the methods described above, such as
the methods illustrated by the flowchart of FIG. 2. In other
embodiments, different elements and data may be included.

Those skilled in the art will appreciate that computer sys-
tem 300 is merely illustrative and is not intended to limit the
scope of embodiments. In particular, the computer system
and devices may include any combination of hardware or
software that can perform the indicated functions of various
embodiments, including computers, network devices, Inter-
net appliances, PDAs, wireless phones, pagers, etc. Computer
system 300 may also be connected to other devices that are
not illustrated, or instead may operate as a stand-alone sys-
tem. In addition, the functionality provided by the illustrated
components may in some embodiments be combined in fewer
components or distributed in additional components. Simi-
larly, in some embodiments, the functionality of some of the
illustrated components may not be provided and/or other
additional functionality may be available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computer system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as instruc-
tions or structured data) on a computer-accessible medium or
a portable article to be read by an appropriate drive, various
examples of which are described above. In some embodi-
ments, instructions stored on a computer-accessible medium
separate from computer system 300 may be transmitted to
computer system 300 via transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link. Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium or via a communication medium. In gen-
eral, a computer-accessible medium may include a storage
medium or memory medium such as magnetic or optical
media, e.g., disk or DVD/CD-ROM, volatile or non-volatile
media suchas RAM (e.g., SDRAM, DDR, RDRAM, SRAM,
etc.), ROM, etc.

The methods described herein may be implemented in
software, hardware, or a combination thereof, in different
embodiments. In addition, the order of methods may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc. All examples described
herein are presented in a non-limiting manner. Various modi-

US 9,275,426 B2

11

fications and changes may be made as would be obvious to a
person skilled in the art having benefit of this disclosure.
Realizations in accordance with embodiments have been
described in the context of particular embodiments. These
embodiments are meant to be illustrative and not limiting.
Many variations, modifications, additions, and improvements
are possible. Accordingly, plural instances may be provided
for components described herein as a single instance. Bound-
aries between various components, operations and data stores
are somewhat arbitrary, and particular operations are illus-
trated in the context of specific illustrative configurations.
Other allocations of functionality are envisioned and may fall
within the scope of claims that follow. Finally, structures and
functionality presented as discrete components in the
example configurations may be implemented as a combined
structure or component. These and other variations, modifi-
cations, additions, and improvements may fall within the
scope of embodiments as defined in the claims that follow.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

The invention claimed is:

1. A method for unifying Graphics Processing Unit (GPU)
computation languages comprising:

initiating, by at least one processor, execution of an appli-

cation on a computing device;
in response to initiating execution of the application, run-
ning a utility program to identify a computation lan-
guage associated with a GPU on the computing device,
wherein the GPU is associated with a first GPU compu-
tation language or a second GPU computation language;

wherein the first GPU computation language includes
source code which is not present in the second GPU
computation language, and

wherein the second GPU computation language includes

source code that is not present in the first GPU compu-
tation language;

accessing a plurality of macros, wherein each macro of the

plurality of macros comprises source code in the first
GPU computation language and source code in the sec-
ond GPU computation language;
expanding each macro in the plurality of macros based on
the identified computation language associated with the
GPU;,

compiling, based on the expanded plurality of macros, a
kernel using source code in the identified computation
language associated with the GPU; and

executing the kernel on the computing device.

2. The method of claim 1, wherein the first GPU compu-
tation language and the second GPU computation language
share code base similarities derived from a common program-
ming language, and wherein each of the plurality of macros
corresponds to a difference between a code base of the first
GPU computation language and a code base of the second
GPU computation language.

3. The method of claim 1, wherein the first GPU compu-
tation language is Compute Unified Device Architecture
(CUDA) and the second GPU computation language is Open
Computing Language (OpenCL).

4. The method of claim 1, wherein each macro of the
plurality of macros represents a difference between the first
GPU computation language and the second GPU computa-
tion language.

5. The method of claim 3, wherein running a utility pro-
gram to identify a computation language associated with a

10

20

25

30

35

40

45

50

55

60

65

12

GPU comprises determining whether a computer hardware is
CUDA-based or OpenCL-based.

6. The method of claim 1, wherein expanding each macro
comprises substituting language specific code into the kernel
wherein the language specific code is compatible with the
identified GPU.

7. The method of claim 6 wherein the kernel contains
tokens where the language specific code is to be substituted.

8. A non-transitory computer readable medium for storing
computer instructions that, when executed by at least one
processor cause the at least one processor to perform a
method for unifying Graphics Processing Unit (GPU) com-
putation languages, the method comprising:

initiating execution of an application on a computing

device;
in response to initiating execution of the application, run-
ning a utility program to identify a computation lan-
guage associated with a GPU on the computing device,
wherein the GPU is associated with a first GPU compu-
tation language or a second GPU computation language;

wherein the first GPU computation language includes
source code which is not present in the second GPU
computation language, and

wherein the second GPU computation language includes

source code that is not present in the first GPU compu-
tation language;

accessing a plurality of macros, wherein each macro of the

plurality of macros comprises source code in the first
GPU computation language and source code in the sec-
ond GPU computation language;

expanding each macro in the plurality of macros based on

the identified computational language associated with
the GPU;,

compiling, based on the expanded plurality of macros, a

kernel using source code in the identified computation
language associated with the GPU; and

executing the kernel on the computing device.

9. The computer readable medium of claim 8, wherein the
first GPU computation language and the second GPU com-
putation language share code base similarities derived from a
common programming language, and wherein each of the
plurality of macros corresponds to a difference between a
code base of the first GPU computation language and a code
base of the second GPU computation language.

10. The computer readable medium of claim 8, wherein the
first GPU computation language is Compute Unified Device
Architecture (CUDA) and the second GPU computation lan-
guage is Open Computing Language (OpenCL).

11. The computer readable medium of claim 8, wherein
running a utility program to identify a computation language
associated with a GPU comprises determining whether a
computer hardware is CUDA-based or OpenCL-based.

12. The computer readable medium of claim 8, wherein
expanding each macro comprises substituting language spe-
cific code into the kernel wherein the language specific code
is compatible with the identified GPU.

13. The computer readable medium of claim 12, wherein
the kernel contains tokens where the language specific code is
to be substituted.

14. An apparatus for unifying Graphics Processing Unit
(GPU) computation languages comprising at least one pro-
cessor, a memory operatively associated with the at least one
processor and having stored therein instructions executable
by the at least one processor, wherein the instructions, when
executed by the at least one processor, cause the apparatus to:

initiate execution of an application;

US 9,275,426 B2

13

in response to initiating execution of the application, run a
utility program to identify a computation language asso-
ciated with a GPU on the computing device, wherein the
GPU is associated with a first GPU computation lan-
guage or a second GPU computation language;

wherein the first GPU computation language includes
source code which is not present in the second GPU
computation language, and

wherein the second GPU computation language includes
source code that is not present in the first GPU compu-
tation language;

access a plurality of macros stored in memory, wherein
each macro of the plurality of macros comprises source
code in the first GPU computation language and source
code in the second GPU computation language;

expand each macro in the plurality of macros based on the
identity of the identified GPU; and

execute a kernel using the expanded macro;

wherein the first GPU computation language and the sec-
ond GPU computation language share code base simi-
larities derived from a common programming language,
and wherein each of the plurality of macros corresponds
to a difference between a code base of the first GPU
computation language and a code base of the second
GPU computation language.

10

15

20

14

15. The apparatus of claim 14, further comprising compil-
ing, based on the expanded plurality of macros, the kernel
using source code in the identified computation language
associated with the GPU.

16. The apparatus of claim 14, wherein the first GPU com-
putation language is Compute Unified Device Architecture
(CUDA) and the second GPU computation language is Open
Computing Language (OpenCL).

17. The apparatus of claim 14, wherein the kernel is con-
figured to execute operations on one or more hardware and/or
software modules responsive to execution of the kernel using
the expanded macro.

18. The apparatus of claim 16, wherein the instructions,
when executed by the at least one processor, further cause the
apparatus to identify a computation language associated with
the GPU by determining whether a computer hardware is
CUDA-based or OpenCL-based.

19. The apparatus of claim 18, wherein the instructions,
when executed stored in memory and executable by the at
least one processor, further cause the apparatus to expand
each macro by substituting language specific code into the
kernel, wherein the language specific code is compatible with
the identified computation language associated with the
GPU.

20. The apparatus of claim 14, wherein the kernel contains
tokens where the language specific code is to be substituted.

#* #* #* #* #*

